Identifying Infants and Young Children With Developmental Disorders in the Medical Home: An Algorithm for Developmental Surveillance and Screening

Council on Children With Disabilities
Section on Developmental Behavioral Pediatrics
Bright Futures Steering Committee
Medical Home Initiatives for Children With Special Needs Project Advisory Committee

ABSTRACT

Early identification of developmental disorders is critical to the well-being of children and their families. It is an integral function of the primary care medical home and an appropriate responsibility of all pediatric health care professionals. This statement provides an algorithm as a strategy to support health care professionals in developing a pattern and practice for addressing developmental concerns in children from birth through 3 years of age. The authors recommend that developmental surveillance be incorporated at every well-child preventive care visit. Any concerns raised during surveillance should be promptly addressed with standardized developmental screening tests. In addition, screening tests should be administered regularly at the 9-, 18-, and 30-month visits. (Because the 30-month visit is not yet a part of the preventive care system and is often not reimbursable by third-party payers at this time, developmental screening can be performed at 24 months of age. In addition, because the frequency of regular pediatric visits decreases after 24 months of age, a pediatrician who expects that his or her patients will have difficulty attending a 30-month visit should conduct screening during the 24-month visit.) The early identification of developmental problems should lead to further developmental and medical evaluation, diagnosis, and treatment, including early developmental intervention. Children diagnosed with developmental disorders should be identified as children with special health care needs, and chronic-condition management should be initiated. Identification of a developmental disorder and its underlying etiology may also drive a range of treatment planning, from medical treatment of the child to family planning for his or her parents.

INTRODUCTION

Early identification of developmental disorders is critical to the well-being of children and their families. It is an integral function of the primary care medical home and an appropriate responsibility of all pediatric health care professionals. Delayed or disordered development can be caused by specific medical conditions...
and may indicate an increased risk of other medical complications. Delayed or disordered development may also indicate an increased risk of behavior disorders or associated developmental disorders. Early identification should lead to further evaluation, diagnosis, and treatment. Early intervention is available for a wide range of developmental disorders; their prompt identification can spur specific and appropriate therapeutic interventions. Identification of a developmental disorder and its underlying etiology may also affect a range of treatment planning, from medical treatment of the child to family planning for his or her parents.

Current detection rates of developmental disorders are lower than their actual prevalence, which suggests that the challenges to early identification of children with developmental disorders have not been overcome. A recent survey of American Academy of Pediatrics (AAP) members revealed that despite publication of the 2001 policy statement “Developmental Surveillance and Screening of Infants and Young Children” and national efforts to improve developmental screening in the primary care setting, few pediatricians use effective means to screen their patients for developmental problems. This 2006 statement replaces the 2001 policy statement and provides an algorithm as a strategy to support health care professionals in developing a pattern and practice of attention to development that can and should continue well beyond 3 years of age.

We recommend that developmental surveillance, as described later, be incorporated at every well-child visit. Any concerns raised during surveillance should be promptly addressed. In addition, standardized developmental screening tests should be administered regularly at the 9-, 18-, and 30-month visits. Pediatric health care professionals may also find it useful to conduct school-readiness screening before the child’s attendance at preschool or kindergarten. These recommendations represent our consensus; further research to evaluate the effectiveness of the proposed approach and available screening tools is encouraged. Separate recommendations aimed at the screening of children for behavioral and emotional disorders are also under consideration by the AAP and are not included in this document.

The detection of developmental disorders is an integral component of well-child care. Title V of the Social Security Act (42 USC Chapter 7, Subchapter V §§701-710 [1989]) and the Individuals With Disabilities Education Improvement Act (IDEA) of 2004 (Pub L No. 108-446) reaffirm the mandate for child health professionals to provide early identification of, and intervention for, children with developmental disabilities through community-based collaborative systems. The medical home is the ideal setting for developmental surveillance and screening of children and adolescents. Parents expect their medical home, as the site of their child’s continuous and comprehensive care, to be interested in children’s development throughout childhood and adolescence, to competently identify developmental strengths and weaknesses, and to be knowledgeable of available community resources to facilitate referrals when needed.

Developmental screening is included in the AAP “Recommendations for Preventive Pediatric Health Care” or “periodicity schedule” and is further recommended by the 2 current AAP compilations of well-child care guidelines: Bright Futures’ and Guidelines for Health Supervision III. In collaboration with other experts in child health care, the AAP is currently revising Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents. It is hoped that the third edition of Bright Futures being developed by the AAP and the revised periodicity schedule will be consistent with the recommendations of this document.

Note Regarding Language

Within the context of this document, clear distinctions have been drawn among (1) surveillance, the process of recognizing children who may be at risk of developmental delays, (2) screening, the use of standardized tools to identify and refine that recognized risk, and (3) evaluation, a complex process aimed at identifying specific developmental disorders that are affecting a child. These definitions build on existing definitions. In a further effort to ensure clarity throughout the document, we have purposefully avoided the term “assessment.” Although the Individuals With Disabilities Education Improvement Act of 2004—and others—use “assessment” as a synonym for “evaluation,” this usage is not universally shared.

“Developmental delay” is used in this statement for the condition in which a child is not developing and/or achieving skills according to the expected time frame. The terms “delayed development,” “disordered development,” and “developmental abnormality” are used synonymously. “Developmental disorder” and “developmental disability” refer to a childhood mental or physical impairment or combination of mental and physical impairments that result in substantial functional limitations in major life activities.

THE ALGORITHM†

1. Pediatric Patient at Preventive Care Visit

Developmental concerns should be included as one of several health topics addressed at each pediatric pre-

*Because the 30-month visit is not yet a part of the preventive care system and is often not reimbursable by third-party payers at this time, developmental screening can be performed at 24 months of age. In addition, because the frequency of regular pediatric visits decreases after 24 months of age, a pediatrician who expects that his or her patients will have difficulty attending a 30-month visit should conduct screening during the 24-month visit.

†Numbers and headings refer to steps in the algorithm (Fig 1).
ventive care visit throughout the first 5 years of life (see Fig 1). Many children are born with risk factors that predispose them to delayed development and developmental disorders; other children will show delayed or disordered development in early childhood, which if undetected and untreated, can contribute to early school failure and attendant social and emotional problems. Some children will have delayed development attributable to a specific medical condition for which medical treatments may be indicated. Early therapeutic intervention may be available for a wide range of developmental disorders.

2. Perform Surveillance
Developmental surveillance is a flexible, longitudinal, continuous, and cumulative process whereby knowledgeable health care professionals identify children who may have developmental problems. Surveillance can be useful for determining appropriate referrals, providing patient education and family-centered care in support of healthy development, and monitoring the effects of developmental health promotion through early intervention and therapy.

A great breadth and depth of information is considered in comprehensive developmental surveillance; it is important to note, however, that much of this information (eg, static risk factors such as low birth weight, results of previous screenings) will accumulate within the child’s health record, where it can be reviewed and flagged as necessary before the visit.

There are 5 components of developmental surveill-
Eliciting and attending to the parents' concerns about their child's development; documenting and maintaining a developmental history; making accurate observations of the child; identifying risk and protective factors; and maintaining an accurate record of documenting the process and findings.

Eliciting and Attending to the Parents' Concerns

Parents and child health professionals have valuable observation skills, and they share the goal of ensuring optimal health and developmental outcome for the child. In the optimal situation, the child health professional elicits parental observations, experiences, and concerns and recognizes that parental concerns mandate serious attention. The literature suggests that posing simple questions to parents related to concerns about the child's development, learning, or behavior can elicit quality information. Health care professionals might ask, for example, “Do you have any concerns about your child's development? Behavior? Learning?” Asking parents specifically about their child’s behavior can yield valuable information regarding development, because parents do not necessarily differentiate between behavior and development, and developmental delays often manifest through behavior. The absence of parental concern does not preclude the possibility of serious developmental delays. The health care professional must attend to all aspects of developmental surveillance.
Maintaining a Developmental History

“What changes have you seen in your child’s development since our last visit?” A developmental history, updated through this or similar questions, should be a component of any history taken during a well-child visit and can assist a child health professional in identifying developmental abnormalities that warrant further investigation. Age-specific queries, such as asking whether the child is walking or pointing, are also valuable.

In addition to attending to delayed development—whereby children acquire skills more slowly than their peers—child health professionals should give equal consideration to other developmental abnormalities.19 Deviations in development, whereby children develop skills out of the usual sequence, are recognized in disorders such as cerebral palsy and autism. Dissociation—differing rates of development in different developmental spheres—commonly occurs with developmental disorders. Children with mental retardation or autistic spectrum disorders, for example, commonly display normal motor skills and delayed language development. Conversely, children with cerebral palsy of the spastic diplegic type often display delayed motor skills with normal language function. Regression, the loss of developmental skills, is a very serious developmental problem suggestive of an active, ongoing neurologic problem.

Making Accurate and Informed Observations of the Child

As trained and experienced professionals, pediatricians and other child health professionals have the expertise and comparative knowledge to identify developmental concerns. A careful physical and developmental examination within the context of the preventive care visit is integral to developmental surveillance.10 Limited evidence suggests that observation of the parent-child interaction may aid in identifying children with delayed development.17

Identifying the Presence of Risk and Protective Factors

A risk assessment is an important part of developmental surveillance. Environmental, genetic, biological,16,18 social, and demographic factors19 can increase a child’s risk for delays in development. Multiple risk factors can amplify each other.20,21 Children with established risk factors may be referred directly for developmental evaluation or may require developmental surveillance at more frequent intervals than children without risk factors.

Child health professionals should identify protective factors as well as risk factors in children’s lives. Strong connections within a loving, supportive family, along with opportunities to interact with other children and grow in independence in an environment with appropriate structure, are important assets in a child’s life. These factors, associated with resiliency in older children, are important components in each family’s story.22

Documenting the Process and Findings

Medical charts, in paper or electronic form, should document all surveillance and screening activities during preventive care visits. In addition, specific actions taken or planned, such as scheduling an earlier follow-up visit, scheduling a visit to discuss developmental concerns more fully, or referrals to medical specialists or early childhood programs and specialists, should also be noted. A paper medical chart might contain a “developmental growth chart” on which the results of developmental surveillance and formal screens are recorded in relationship to the child’s age and the dates at the time the findings were obtained. An electronic chart, on the other hand, may allow for the development of a form on which developmental findings and plans are recorded and from which prompts for further action may occur automatically. Recent technologies that automate developmental risk assessments within the waiting room through computer-interpreted paper forms or information kiosks are also increasingly commonplace. We encourage continued development and scientific evaluation of these technologies given their potential to facilitate the process of developmental surveillance and screening.

3. Does Surveillance Demonstrate Risk?

The concerns of both parents and child health professionals should be included in determining whether surveillance suggests that the child may be at risk of developmental problems. If parents or the child health professional express concern about the child’s development, a developmental screening to address the concern specifically should be conducted. This screening may require a separate visit; if so, the visit should be held as soon as possible.

Reassurance has a role in the clinical encounter but varies depending on the progress and outcome of developmental surveillance. Reassurance should be rooted in and reference the findings of developmental surveillance. If, for example, developmental surveillance indicates that the child is at low risk of a developmental disorder, reassurance can be offered with caution and a planned outcome. Specific, simple, age-specific developmental goals can be identified, and parents can be encouraged to schedule recheck appointments if the child is not attaining those goals. In reassuring the parents, the pediatrician should emphasize the importance of continual surveillance and screening.

4. Is This a 9-, 18-, or 30-Month* Visit?

All children, most of whom will not have identifiable risks or whose development appears to be proceeding typically, should receive periodic developmental screening using a standardized test. In the absence of established risk factors or parental or provider concerns, a general developmental screen is recommended at the 9-,
Developmental Screening Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Age Range</th>
<th>No. of Items</th>
<th>Administration Time</th>
<th>Psychometric Properties</th>
<th>Scoring Method</th>
<th>Cultural Considerations</th>
<th>Purchase/Obtainment Information</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ages & Stages Questionnaires (ASQ)</td>
<td>4–60 mo</td>
<td>30</td>
<td>10–15 min</td>
<td>Normed on 2008 children from diverse-ethnic and socioecononic backgrounds; including Spanish speaking; sensitivity 0.70–0.90 (moderate to high); specificity 0.76–0.91 (moderate to high)</td>
<td>Risk categorization, provides a cutoff score in 5 domains of development that indicates possible need for further evaluation</td>
<td>English, Spanish, French, and Korean versions available</td>
<td>Paul H. Brookes Publishing Co; 800/838-8775; www.brookespublishing.com</td>
<td>Squiers J, Potter L, Brooker D. The ASQ User’s Guide. 2nd ed. Baltimore, MD: Paul H. Brookes Publishing Co; 1999</td>
</tr>
<tr>
<td>Battelle Developmental Inventory Screening Tool, 2nd ed (BDI-ST)</td>
<td>Birth to 95 mo</td>
<td>100</td>
<td>10–15 min (<3 y old) or 20–30 min (≥3 y old)</td>
<td>Normed on 2500 children, demographic information matched 2000 US Census data; additional bias reviews performed to adjust for gender and ethnicity; sensitivity 0.72–0.93 (moderate to high); specificity 0.72–0.88 (moderate)</td>
<td>Quantitative scaled scores in all 5 domains are compared with cutoffs to determine need for referral</td>
<td>English and Spanish versions available</td>
<td>Riverside Publishing Co; 800/523-9500; www.rivpub.com</td>
<td>Newborg J, Battelle Developmental Inventory. 2nd ed. Itasca, IL: Riverside Publishing; 2004</td>
</tr>
<tr>
<td>Bayley Infant Neurodevelopmental Screen (BINS)</td>
<td>3–24 mo</td>
<td>11–13</td>
<td>10 min</td>
<td>Normed on ~1700 children, stratified on age, to match the 2000 US Census data; sensitivity 0.72–0.96 (moderate); specificity 0.75–0.86 (moderate)</td>
<td>Risk categorization, children are graded as low, moderate, or high risk in each of 4 conceptual domains by use of 2 cutoff scores</td>
<td>English and Spanish versions available</td>
<td>Psychological Corp; 800/271-8575; www.harvardassessment.com</td>
<td>Aylward GP, Bayley Infant Neurodevelopmental Screener. San Antonio, TX: Psychological Corp; 1995; Aylward GP, Verhulst SJ, Bell S. Predictive utility of the BINS: Infant Neurodevelopmental Screener (BINS) risk status classifications: clinical interpretation and application. Dev Med Child Neurol. 2000; 42:21–31</td>
</tr>
<tr>
<td>Brigance Screens-II</td>
<td>0–90 mo</td>
<td>8–10</td>
<td>10–15 min</td>
<td>Normed on 1156 children from 29 clinical sites in 21 states; sensitivity 0.70–0.90 (moderate); specificity 0.70–0.80 (moderate)</td>
<td>All results are criterion based; no normative data are presented</td>
<td>English and Spanish versions available</td>
<td>Curriculum Associates Inc; 800/225-0248; www.curriculumassociates.com</td>
<td>Glance FP. Technical Report for the Brigance Screens. North Billerica, MA: Curriculum Associates Inc; 2005; Glance FP. The Brigance Infant-Toddler Screen (BTS): standardization and validation. J Dev Behav Pediatr. 2002;23:145–150</td>
</tr>
<tr>
<td>Child Development Inventory (CDI)</td>
<td>18mo–6 y</td>
<td>300</td>
<td>30–30 min</td>
<td>Normative sample included 568 children from south St Paul, MN, a primarily white working class community; Don et al included 45 children from a high-risk follow-up program, which included 69% with high school education or less and 84% Medicaid; sensitivity 0.60–1.0 (moderate to high); specificity 0.94–0.96 (high)</td>
<td>Quantitative, provides age equivalents in each domain as well as SDs</td>
<td>English and Spanish versions available</td>
<td>Behavior Science Systems Inc; 612/850-8700; www.childredev.com</td>
<td>Iren H. Child Development Inventory. Manual. Minneapolis, MN: Behavior Science Systems Inc; 1992; Doug KB, Macias MM, Saylor GE, Laver JS, Ingersm PE. The Child Development Inventory: a developmental outcome measure for follow-up of the high risk infant. J Pediatr. 1999;135:358–362</td>
</tr>
<tr>
<td>Description</td>
<td>Age Range</td>
<td>No. of Items</td>
<td>Administration Time</td>
<td>Psychometric Properties</td>
<td>Scoring Method</td>
<td>Cultural Considerations</td>
<td>Purchase/Obtainment Information</td>
<td>Key References</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Child Development Review Parent Questionnaire (CDR-PQ)</td>
<td>Parent-completed questionnaire; professional-completed child development chart; measures social, self-help, motor, and language skills</td>
<td>18 mo to 5 y</td>
<td>6 open-ended questions and a 26-item possible problems checklist to be completed by the parent, followed by 99 items covering the 5 domains, which may be used by the professional as an observation guide or parent-interview guide</td>
<td>10–20 min</td>
<td>Standardized with 220 children aged 1–4 y from primarily white, working-class families in South St Paul, MN; sensitivity 0.68 (low); specificity 0.88 (moderate)</td>
<td>Risk categorization: parent's responses to the 42 items; and problems checklist; classified as: indicating (1) no problem, (2) a possible problem, or (3) a possible major problem</td>
<td>English and Spanish versions available</td>
<td>Behavior Science Systems Inc</td>
</tr>
<tr>
<td>Denver-II Developmental Screening Test</td>
<td>Directly administered tool; designed to screen expressive and receptive language; gross motor, fine motor, and personal-social skills; results in risk category (normal, questionable, abnormal)</td>
<td>0–6y</td>
<td>0.43–0.80 from child norms</td>
<td>10–20 min</td>
<td>Normed on 2006 term children in Colorado; diverse in terms of age, place of residence, ethnicity, cultural background, and maternal education; sensitivity 0.56–0.83 (low to moderate); specificity 0.63–0.80 (low to moderate)</td>
<td>Risk categorization: pass or fail for each question, and these responses are compared with age-based norms to classify children as in the normal range, suspect, or delayed</td>
<td>English and Spanish versions available</td>
<td>Denver Developmental Materials</td>
</tr>
<tr>
<td>Infant Development Inventory</td>
<td>Parent-completed questionnaire; measures social, self-help, motor, and language skills</td>
<td>0–18 mo</td>
<td>4 open-ended questions followed by 87 items covering the 5 domains</td>
<td>5–10 min</td>
<td>Studied in 86 high-risk 8-month-olds seen in a prenatal follow-up program and compared with the Bayley scales; sensitivity 0.85 (moderate); specificity 0.77 (moderate)</td>
<td>Risk categorization: delayed or not delayed</td>
<td>English and Spanish versions available</td>
<td>Behavior Science Systems Inc</td>
</tr>
<tr>
<td>Parents' Evaluation of Developmental Status (PEOS)</td>
<td>Parent-child interview form, designed to screen for developmental and behavioral problems needing further evaluation; single response form used for all ages; may be useful as a surveillance tool</td>
<td>0–8y</td>
<td>0.70–0.80 (moderate)</td>
<td>2–10 min</td>
<td>Standardized with 771 children from diverse ethnic and socioeconomic backgrounds, including Spanish-speaking, sensitivity 0.74–0.79 (moderate); specificity 0.70–0.80 (moderate)</td>
<td>Risk categorization: provides algorithm to guide referral, additional screening, or continued surveillance</td>
<td>English, Spanish, Vietnamese, Arabic, Swahili, Indonesian, Chinese, Taiwanese, French, Somali, Portuguese, Malay, Thai, and Lao versions available</td>
<td>Blaisdell & Vanderventer Press LLC</td>
</tr>
<tr>
<td>Language and cognitive screening tools</td>
<td>Capute Scales (also known as Cognitive-Adaptive Test/Clinical Language-Auditory Milestone Scale: CAT/CLAMS)</td>
<td>Directly administered tool; measures visual/motor problems solving (CAP), and expressive and receptive language (CLAMS); results in developmental quotient and age equivalent</td>
<td>3–36 mo</td>
<td>100</td>
<td>15–20 min</td>
<td>Standardized on 1055 North American children aged 2–36 mo; correlations high with Bayley Scales of Infant Development; sensitivity 0.21–0.67 in low-risk population (low) and 0.85–0.88 in high-risk populations (low to high); specificity 0.65–1.00 in low-risk population (high) and 0.82–0.89 in high-risk populations (moderate to high)</td>
<td>Quantitative (developmental age level and quotient)</td>
<td>English, Spanish, and Russian versions available</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1 Continued

TABLE 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Age Range</th>
<th>No. of Items</th>
<th>Administration Time</th>
<th>Psychometric Properties</th>
<th>Scoring Method</th>
<th>Cultural Considerations</th>
<th>Purchase/Obtainment Information</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Development Review Parent Questionnaire (CDR-PQ)</td>
<td>Parent-completed questionnaire; professional-completed child development chart; measures social, self-help, motor, and language skills</td>
<td>18 mo to 5 y</td>
<td>6 open-ended questions and a 26-item possible problems checklist to be completed by the parent, followed by 99 items covering the 5 domains, which may be used by the professional as an observation guide or parent-interview guide</td>
<td>10–20 min</td>
<td>Standardized with 220 children aged 1–4 y from primarily white, working-class families in South St Paul, MN; sensitivity 0.68 (low); specificity 0.88 (moderate)</td>
<td>Risk categorization: parent's responses to the 42 items; and problems checklist; classified as: indicating (1) no problem, (2) a possible problem, or (3) a possible major problem</td>
<td>English and Spanish versions available</td>
<td>Behavior Science Systems Inc</td>
</tr>
<tr>
<td>Denver-II Developmental Screening Test</td>
<td>Directly administered tool; designed to screen expressive and receptive language; gross motor, fine motor, and personal-social skills; results in risk category (normal, questionable, abnormal)</td>
<td>0–6y</td>
<td>0.43–0.80 from child norms</td>
<td>10–20 min</td>
<td>Normed on 2006 term children in Colorado; diverse in terms of age, place of residence, ethnicity, cultural background, and maternal education; sensitivity 0.56–0.83 (low to moderate); specificity 0.63–0.80 (low to moderate)</td>
<td>Risk categorization: pass or fail for each question, and these responses are compared with age-based norms to classify children as in the normal range, suspect, or delayed</td>
<td>English and Spanish versions available</td>
<td>Denver Developmental Materials</td>
</tr>
<tr>
<td>Infant Development Inventory</td>
<td>Parent-completed questionnaire; measures social, self-help, motor, and language skills</td>
<td>0–18 mo</td>
<td>4 open-ended questions followed by 87 items covering the 5 domains</td>
<td>5–10 min</td>
<td>Studied in 86 high-risk 8-month-olds seen in a prenatal follow-up program and compared with the Bayley scales; sensitivity 0.85 (moderate); specificity 0.77 (moderate)</td>
<td>Risk categorization: delayed or not delayed</td>
<td>English and Spanish versions available</td>
<td>Behavior Science Systems Inc</td>
</tr>
<tr>
<td>Parents' Evaluation of Developmental Status (PEOS)</td>
<td>Parent-child interview form, designed to screen for developmental and behavioral problems needing further evaluation; single response form used for all ages; may be useful as a surveillance tool</td>
<td>0–8y</td>
<td>0.70–0.80 (moderate)</td>
<td>2–10 min</td>
<td>Standardized with 771 children from diverse ethnic and socioeconomic backgrounds, including Spanish-speaking, sensitivity 0.74–0.79 (moderate); specificity 0.70–0.80 (moderate)</td>
<td>Risk categorization: provides algorithm to guide referral, additional screening, or continued surveillance</td>
<td>English, Spanish, Vietnamese, Arabic, Swahili, Indonesian, Chinese, Taiwanese, French, Somali, Portuguese, Malay, Thai, and Lao versions available</td>
<td>Blaisdell & Vanderventer Press LLC</td>
</tr>
<tr>
<td>Language and cognitive screening tools</td>
<td>Capute Scales (also known as Cognitive-Adaptive Test/Clinical Language-Auditory Milestone Scale: CAT/CLAMS)</td>
<td>Directly administered tool; measures visual/motor problems solving (CAP), and expressive and receptive language (CLAMS); results in developmental quotient and age equivalent</td>
<td>3–36 mo</td>
<td>100</td>
<td>15–20 min</td>
<td>Standardized on 1055 North American children aged 2–36 mo; correlations high with Bayley Scales of Infant Development; sensitivity 0.21–0.67 in low-risk population (low) and 0.85–0.88 in high-risk populations (low to high); specificity 0.65–1.00 in low-risk population (high) and 0.82–0.89 in high-risk populations (moderate to high)</td>
<td>Quantitative (developmental age level and quotient)</td>
<td>English, Spanish, and Russian versions available</td>
</tr>
</tbody>
</table>

TABLE 1 Continued
<p>| Communication and Symbolic Behavior Scales-Developmental Profile (CSBS-DP): Infant Toddler Checklist | Standardized tool for screening of communication and symbolic abilities up to the 24-mo level; the Infant Toddler Checklist is a 1-page parent-completed screening tool | 6–24 mo | 24 | 5–10 min | Standardized on 2188 North American children aged 6–24 mo; correlations: 0.39–0.75 with Mullen Scales at 2 y of age; sensitivity: 0.76–0.88 in low- and at-risk children at 2 y of age (moderate); specificity: 0.82–0.87 in low- and at-risk children at 2 y of age (moderate) | Risk categorization (concern/no concern) | English version available | Paul H. Brookes Publishing Co | Wetherby AM, Pizaritz BM. Communication and Symbolic Behavior Scales: Developmental Profile. Baltimore, MD: Paul H. Brookes Publishing Co; 2002 |
| Early Language Milestone Scale (ELM Scale-2) | Assesses speech and language development from birth to 36 mo | 0–36 mo | 48 | 1–10 min | Small cross-sectional standardization sample of 191 children; 235 children for speech intelligibility item; sensitivity: 0.68–1.00 in low- and high-risk populations (low to high); specificity: 0.06–1.00 in low- and high-risk populations (low to high) | Quantitative (age equivalent, percentile, standard score) | English version available | Pro Ed Inc | Coplan JM. Early Language Milestone Scale. Austin, TX: Pro-Ed Inc; 1993. Coplan J, Gleason JL. Test-retest and interobserver reliability of the Early Language Milestone Scale, second edition. J Pediatr. 1993;122:212–219 |
| Motor Quotient (MQ) | Uses simple ratio quotient with gross motor milestones for detection of delayed motor development | 8–18 mo | 11 total milestones; 1 per visit | 1–3 min | Single published report of 144 referred children; sensitivity: 0.67 (moderate); specificity: 0.93 (moderate) | Quantitative (developmental age levels and quotient) | English version available | See key references | Capute AJ, Shapiro BK. The motor quotient: a method for the early detection of motor delay. Am J Dis Child. 1985;139:940–942 |</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Age Range</th>
<th>No. of Items</th>
<th>Administration Time</th>
<th>Psychometric Properties (^a)</th>
<th>Scoring Method</th>
<th>Cultural Considerations</th>
<th>Purchase/Obtainment Information</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervasive Developmental Disorders Screening Test-II (PDDST-II), Stage 1-Primary Care Screener</td>
<td>Parent-completed questionnaire designed to identify children at risk of autism from the general population</td>
<td>12–48 mo</td>
<td>10–15 min to complete; 5 min to score</td>
<td>Validated using extensive multimethod diagnostic evaluation on 665 children at risk of autistic spectrum disorders and 256 children with mild to moderate other developmental disorders; no sensitivity/specificity data reported for screening of an unselected sample; sensitivity: 0.58–0.92 (moderate to high); specificity: 0.70–0.91 (moderate to high)</td>
<td>Risk categorization (pass/fail)</td>
<td>English version available</td>
<td>Psychological Corp</td>
<td>Siegel B. Pervasive Developmental Disorders Screening Test-II (PDDST-II). Early Childhood Screener for Autistic Spectrum Disorders. San Antonio, TX: Harcourt Assessment Inc, 2004</td>
</tr>
<tr>
<td>Pervasive Developmental Disorders Screening Test-II (PDDST-II), Stage 2-Developmental Clinic Screener</td>
<td>Parent-completed questionnaire designed to detect children at risk of autism from other developmental disorders</td>
<td>12–48 mo</td>
<td>10–15 min to complete; 5 min to score</td>
<td>Validated using extensive multimethod diagnostic evaluation on 450 children with confirmed autistic spectrum disorder (autism, pervasive developmental disorder not otherwise specified, or Asperger syndrome) and 104 children who were evaluated for autistic spectrum disorder but who did not receive a diagnosis on the autistic spectrum; no sensitivity/specificity data reported for screening of an unselected sample; sensitivity: 0.69–0.73 (moderate); specificity: 0.69–0.63 (low)</td>
<td>Risk categorization (pass/fail)</td>
<td>English version available</td>
<td>Psychological Corp</td>
<td>Siegel B. Pervasive Developmental Disorders Screening Test-II (PDDST-II). Early Childhood Screener for Autistic Spectrum Disorders. San Antonio, TX: Harcourt Assessment Inc, 2004</td>
</tr>
</tbody>
</table>

The AAP does not approve/endorse any specific tool for screening purposes. This list is not exhaustive, and other tests may be available.

\(^a\) Sensitivity and specificity were categorized as follows: low = 69 or below; moderate = 70 to 89; high = 90 or above.
18-, and 30-month visits. Consideration of a number of factors, including the time available to focus on developmental concerns during a routine pediatric visit, led to these recommended ages.

- Nine months of age: At 9 months of age, many issues involving motor skills development can be reliably identified. A 9-month screening provides an additional opportunity to attend to the child’s visual and hearing abilities. Early communication skills may be emerging—evidence suggests symptoms of autism, such as lack of eye contact, orienting to name being called, or pointing, may be recognizable in the first year of life. Early intervention to address specific developmental disorders is available to infants from birth and should be accessed to address any delays detected at 9 months. At-risk 9-month-old infants should also be referred to early intervention programs if not previously referred. The 9-month preventive care visit also provides a good opportunity for the child health professional to educate parents about developmental screening and to encourage parents to pay special attention to communication and language skills. Social and nonverbal communication, including vocalizations and gestures, are important aspects of emerging communication that can be assessed at 9 months. Because of the rapid development of motor, language, and cognitive skills, parents should be encouraged to express any concerns they have about their child’s progress rather than waiting until the 18-month visit. The AAP brochure Is Your One-Year Old Communicating With You? might be distributed at the 9-month visit to educate parents about communication and target any concerns they have. (If practices have eliminated the 9-month visit, this screening should be performed at the 12-month visit.)

- Eighteen months of age: Delays in communication and language development are often evident by 18 months of age. Mild motor delays that were undetected at the 9-month screening may be more apparent at 18 months of age. Medical interventions for motor disorders have been shown to be effective in children at 18 months of age, and effective early intervention for delayed language development is also available. In addition to a general developmental screening tool, an autism-specific tool should be administered to all children at the 18-month visit. Symptoms of autism are often present at this age, and effective early intervention strategies are available.

- Thirty months of age: By 30 months of age, most motor, language, and cognitive delays may be identified with screening instruments, leading to evaluation of and intervention for those children with delayed development. A 30-month visit focusing on child development and developmental screening would allow the health care provider to devote special attention to this area. Therefore, addition of this preventive care visit to the periodicity schedule is being considered by Bright Futures.

When child health professionals use only clinical impressions rather than formal screening, estimates of children’s developmental status are much less accurate. Including developmental screening tools at targeted developmental ages is intended to enhance the precision of the developmental surveillance process. These recommended ages for developmental screening are suggested only as a starting point for children who appear to be developing normally; surveillance should continue throughout childhood, and screenings should be conducted anytime that concerns are raised by parents, child health professionals, or others involved in the care of the child. At the 4-year visit, a screening for school readiness is appropriate.

5a and 5b: Administer Screening Tool
Developmental screening is the administration of a brief standardized tool that aids the identification of children at risk of a developmental disorder. Many screening tools can be completed by parents and scored by nonphysician personnel; the physician interprets the screening results.

Developmental screening does not result in either a diagnosis or treatment plan but rather identifies areas in which a child’s development differs from same-age norms. Developmental screening that targets the area of concern is indicated whenever a problem is identified during developmental surveillance. Because development is dynamic in nature and surveillance and screening have limits, periodic screening with a validated instrument should occur so that a problem not detected by surveillance or a single screening can be detected by subsequent screening. Repeated and regular screening is more likely than a single screening to identify problems, especially in later-developing skills such as language. Waiting until a young child misses a major milestone such as walking or talking may result in late rather than early recognition, increasing parental dissatisfaction and anxiety and depriving the child and family of the benefits of early identification and intervention.

Table 1 provides a list of developmental screening tools; a discussion of how to choose an appropriate screening tool is included in “Implementing the Algorithm.”

6a and 6b: Are the Screening-Tool Results Positive/Concerning?
When the results of the periodic screening tool are normal, the child health professional can inform the parents and continue with other aspects of the preventive visit. Normal screening results provide an opportunity to focus on developmental promotion. However, when a screening tool is administered because of con-
cerns about development, an early return visit to provide additional developmental surveillance should be scheduled even if the screening-tool results do not indicate a risk of delay.

7. Make Referrals for Developmental and Medical Evaluations and Early Developmental Intervention/Early Childhood Services

If screening results are concerning, the child should be scheduled for developmental and medical evaluations. These evaluations may occur at a different visit or series of visits or often in a different setting by other professionals. The separate box in which these steps are placed in the algorithm (Fig 1) is intended to represent the possibility that these actions will occur at a different time and location. However, they should be scheduled as quickly as possible, and professionals should coordinate activities and share findings.

8. Developmental and Medical Evaluations

Developmental Evaluation

When developmental surveillance or screening identifies a child as being at high risk of a developmental disorder, diagnostic developmental evaluation should be pursued. This evaluation is aimed at identifying the specific developmental disorder or disorders affecting the child, thus providing further prognostic information and allowing prompt initiation of specific and appropriate early childhood therapeutic interventions. Children with neurodevelopmental disorders also often have other associated developmental or behavior disorders. Identification of these disorders can lead to further evaluation and treatment. Pediatric subspecialists such as neurodevelopmental pediatricians, developmental and behavioral pediatricians, child neurologists, pediatric physiatrists, or child psychiatrists can perform the developmental diagnostic evaluation, as can other early childhood professionals in conjunction with the child’s primary care provider. Such early childhood professionals include early childhood educators, child psychologists, speech-language pathologists, audiologists, social workers, physical therapists, and occupational therapists, ideally working with families as part of an interdisciplinary team and with the medical home.

Medical Evaluation

In addition to the developmental evaluation, a medical diagnostic evaluation to identify an underlying etiology should be undertaken. This evaluation should consider biological, environmental, and established risk factors for delayed development. Vision screening and objective hearing evaluation; review of newborn metabolic screening and growth charts; and an update of environmental, medical, family, and social history for additional risk factors are integral to this evaluation.

A comprehensive medical evaluation is essential whenever a delay is confirmed. This evaluation varies somewhat with the risk factors and findings and may include brain imaging, electroencephalogram (EEG), genetic testing, and/or metabolic testing.

Identification of an etiology may provide parents with a greater depth of understanding of their child’s disability. Identifying an etiology also can affect various aspects of treatment planning, including specific prognostic information, genetic counseling around recurrence risk and family planning, specific medical treatments for improved health and function of the child, and therapeutic intervention programming. An underlying etiology will be identified in approximately one quarter of cases of delayed development, with higher rates (>50%) in children with global developmental delays and motor delays and lower rates (<5%) in children with isolated language disorders.

This evaluation can be performed by a trained and skilled pediatrician; a pediatric subspecialist such as a neurodevelopmental pediatrician, child neurologist, or developmental/behavioral pediatrician; or through affiliated medical professionals such as pediatric geneticists or physiatrists. The primary care provider within the medical home should develop an explicit comanagement plan with the specialist(s).

Early Developmental Intervention/Early Childhood Services

Early intervention programs can be particularly valuable when a child is first identified to be at high risk of delayed development, because these programs often provide evaluation services and can offer other services to the child and family even before an evaluation is complete. These services can include developmental therapies, service coordination, social work services, assistance with transportation and related costs, family training, counseling, and home visits. The diagnosis of a specific developmental disorder is not necessary for an early intervention referral to be made. Child health professionals should realize that a community-based early intervention evaluation may not address children with specific medical risks, and further developmental and medical evaluation will often be necessary for children with established delays.

Establishing an effective and efficient partnership with early childhood professionals is an important ingredient of successful care coordination for children within the medical home. The partnership is built on shared interest in the developmental outcomes of children and recognition of the different skill sets of child health professionals and educators. For additional information regarding care coordination, see the AAP policy statement “Care Coordination in the Medical Home: Integrating Health and Related Systems of Care for Children With Special Health Care Needs.”

Given the variety of community settings in which health care is provided, the pediatrician may consult
early childhood professionals who work in specialized health care centers, university centers, early intervention programs, early childhood educational programs, or private practices. Whenever possible, communities should coordinate resources; this is especially true in preventing delays in care or unnecessary duplication of service.

The child’s medical charts, whether electronic or paper, should be organized to create a system that guarantees continuity of care, especially when the child is referred to specialists and/or community agencies. In addition, a means of incorporating information about a child’s developmental status from sources outside the medical home should be available. The child health care chart should be designed to alert the clinician if further attention is needed between regular periodic visits.

9. Is a Developmental Disorder Identified?

If a developmental disorder is identified, the child should be identified as a child with special health care needs, and chronic-condition management should be initiated (see No. 10 below). If a developmental disorder is not identified through medical and developmental evaluation, the child should be scheduled for an early return visit for further surveillance, as mentioned previously. More frequent visits, with particular attention paid to areas of concern, will allow the child to be promptly referred for further evaluation if any additional evidence of delayed development or a specific disorder emerges.

10. Identify as a Child With Special Health Care Needs and Initiate Chronic-Condition Management

When a child is discovered to have a significant developmental disorder, that child becomes a child with special health care needs even if that child does not have a specific disease etiology identified. Such a child should be identified by the medical home for appropriate chronic-condition management and regular monitoring and entered into the practice’s children and youth with special health care needs registry. Every primary care practice should create a registry for the children in the practice who have special health care needs.

The medical home provides a triad of key primary care services including preventive care, acute illness management, and chronic-condition management. A program of chronic-condition management provides proactive care for children and youth with special health care needs, including condition-related office visits, written care plans, explicit co-management with specialists, appropriate patient education, and effective information systems for monitoring and tracking.

Management plans should be based on a comprehensive needs assessment conducted with the family. Management plans should include relevant, measurable, and valid outcomes. These plans must be reviewed on a regular basis and updated as necessary. The child health professional should actively participate in all care-coordination activities for children who have complex health conditions in addition to developmental problems. Decisions regarding appropriate therapies and their scope and intensity should be determined in consultation with the child’s family, therapists, and educators (including early intervention or school-based programs) and should be based on knowledge of the scientific evidence for their use.

Children with established developmental disorders often benefit from referral to community-based family support services such as respite care, parent-to-parent programs, and advocacy organizations. Some children may qualify for additional benefits such as supplemental security income, public insurance, waiver programs, and state programs for children and youth with special health care needs (Title V). Parent organizations, such as Family Voices, and condition-specific associations can provide parents with information and support and can also provide an opportunity for advocacy.

IMPLEMENTING THE ALGORITHM

Choosing Developmental Screening Tools

Although all developmental screening tools are designed to identify children with potentially delayed development, each one approaches the task in a different way. There is no universally accepted screening tool appropriate for all populations and all ages. Currently available screening tools vary from broad general developmental screening tools to others that focus on specific areas of development, such as motor or communication skills. Their psychometric properties vary widely in characteristics such as their standardization, the comparison group used for determining sensitivity and specificity, and population risk status.

Broad screening tools should address developmental domains including fine and gross motor skills, language and communication, problem solving/adaptive behavior, and personal-social skills. Screening tools also must be culturally and linguistically sensitive. Many screening tools are available, and the choice of which tool to use depends on the population being screened, the types of problems being screened for in that population, administration and scoring time, any administration training time, the cost of the tool, and the possibilities for adequate payment.

Screening tests should be both reliable and valid, with good sensitivity and specificity.

- Reliability is the ability of a measure to produce consistent results.
- The validity of a developmental screening test relates to its ability to discriminate between a child at a determined level of risk for delay (ie, high, moderate) and the rest of the population (low risk).
Sensitivity is the accuracy of the test in identifying delayed development.

Specificity is the accuracy of the test in identifying individuals who are not delayed.

If a test incorrectly identifies a child as delayed, it will result in overreferrals. If a test incorrectly identifies a child as normal, it results in underreferrals. For developmental screening tests, scoring systems must be developed that minimize underreferrals and overreferrals. Trade-offs between sensitivity and specificity occur when devising these scoring systems. Sensitivity and specificity levels of 70% to 80% have been deemed acceptable for developmental screening tests. These values are lower than generally accepted for medical screening tests because of the challenges inherent in measuring child development and the absence of specific curative and clearly effective treatments. However, combining developmental surveillance and periodic screening increases the opportunity for identification of undetected delays in early development. Overidentification of children using standardized screening tools may indicate that this group of children includes some with below-average development and/or significant psychosocial risk factors. These children may benefit from other community programs as well as closer monitoring of their development by their families, pediatric health professionals, and teachers or caregivers.

Table 1 provides a list of developmental screening tools and their psychometric testing properties. These screening tools vary widely in their psychometric properties. This list is not exhaustive; other standardized, published tools are available. We look forward to further evaluation/validation of available screening instruments as well as the continued development of new tools with stronger properties. Child health professionals are encouraged to familiarize themselves with a variety of screening tools and choose those that best fit their populations, practice needs, and skill level.

Incorporating Surveillance and Screening in the Medical Home
A quality-improvement approach may be the most effective means of building surveillance and screening elements into the process of care in a pediatric office. Improving developmental screening and surveillance should be regarded as a “whole-office” endeavor and not simply a matter of clinician continuing education or the addition of tasks to well-child visits. Front-desk procedures, such as appropriate scheduling for screening visits and procedures for flagging children with established risk factors, need to be explicitly designed by the office staff. Nonphysician staff may need training in the administration of developmental screening tools. The input of consumers is crucial to developing an effective system and can be accomplished by adding a parent to an office planning team, by using parent focus groups, or by administering parent questionnaires. Specific to developmental screening could be consumer opinion about preferences for completing questionnaires in the office or before the visit, how they would like to be informed about the results of screening, how parents of children with identified conditions associated with developmental delay would like to have their children’s development monitored, or feedback on parental satisfaction with their child’s developmental screening or feedback on the referral process.

Screening Payment
Separate Current Procedural Terminology (CPT) codes (see Table 2) exist for developmental screening (96110: developmental testing: limited) and testing (96111: developmental testing: extended). The relative values for these codes are published in the Medicare Resource-Based Relative Value Scale and reflect physician work, practice expenses, and professional liability expenses. Table 2 outlines the appropriate codes to use when billing for the processes described in the algorithm. Health plans are encouraged to adhere to CPT guidelines and provide coverage and payment for developmental screening and testing.

Billing processes related to developmental screening and surveillance should be carefully reviewed to ensure that appropriate CPT codes are used to document screening procedures and ensure proper payment. CPT code 96110 for limited developmental testing does not include any payment for medical provider services. The expectation is that a nonphysician will administer the screening tool to the parent and then score their responses. The physician reviews and interprets the screening results; the physician’s work is included in the evaluation and management code used for the child’s visit. Medicaid may not pay separately for developmental screening when provided as part of early and periodic screening, diagnostic, and treatment services. If non-Medicaid carriers are involved, the preventive care code is used with the modifier 25 appended and 96110 listed for each screening tool administered. The CPT code 96111, extended developmental testing, includes medical provider work. This code would more appropriately be used when the medical provider observes the child performing a task and demonstrating a specific developmental skill.

The codes in Table 2 may be applicable to the phases of developmental surveillance, screening, and evaluation described in the proposed algorithm (Fig 1).

SUMMARY
Developmental surveillance should be a component of every preventive care visit. Standardized developmental screening tools should be used when such surveillance
identifies concerns about a child’s development and for children who appear to be at low risk of a developmental disorder at the 9-, 18-, and 30-month* visits.

When a child has a positive screening result for a developmental problem, developmental and medical evaluations to identify the specific developmental disorders and related medical problems are warranted. In addition, children who have positive screening results for developmental problems should be referred to early developmental intervention and early childhood services and scheduled for earlier return visits to increase developmental surveillance.

Children diagnosed with developmental disorders should be identified as children with special health care needs; chronic-condition management for these children should be initiated.
RECOMMENDATIONS

For the Medical Home

1. Perform developmental surveillance at every preventive visit throughout childhood, and ensure that such surveillance includes eliciting and attending to parents’ concerns, obtaining a developmental history, making accurate and informed observations of the child, identifying the presence of risk and protective factors, and documenting the process and findings.

2. Administer a standardized developmental screening tool for children who appear to be at low risk of a developmental disorder at the 9-, 18-, and or 30-month* visits and for those whose surveillance yields concerns about delayed or disordered development.

3. Schedule early return visits for children whose surveillance raises concerns that are not confirmed by a developmental screening tool.

4. Refer children about whom developmental concerns are raised to early intervention and early-childhood programs.

5. Coordinate developmental and medical evaluations for children who have positive screening results for developmental disorders.

6. Initiate a program of chronic-condition management for any child identified with a developmental disorder.

7. Document all surveillance, screening, evaluation, and referral activities in the child’s health chart.

8. Establish working relationships with state and local programs, services, and resources.

9. Use a quality-improvement model to integrate surveillance and screening into office procedures and to monitor their effectiveness and outcomes.

For Policy and Advocacy

10. Provide appropriate payment for developmental surveillance, screening, and evaluation.

11. Teach child health professionals, through training and continuing education programs, to conduct developmental surveillance and screening as an integral responsibility of the medical home.

For Research and Development

12. Develop information systems and data-gathering tools to automate the algorithm recommended by this policy statement for ease and consistency of use.

13. Expand the evidence base for the effectiveness of developmental surveillance activities.

15. Expand the evidence base for the use and effectiveness of the proposed algorithm, including the optimal timing of the recommended developmental screening.

POLICY REVISION COMMITTEE (PRC)

COUNCIL ON CHILDREN WITH DISABILITIES

John C. Duby, MD
Paul H. Lipkin, MD, PRC Chairperson

SECTION ON DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS

Michelle M. Macias, MD
Lynn M. Wegner, MD

BRIGHT FUTURES STEERING COMMITTEE

Paula Duncan, MD
Joseph F. Hagan, Jr, MD

MEDICAL HOME INITIATIVES FOR CHILDREN WITH SPECIAL NEEDS

PROJECT ADVISORY COMMITTEE

W. Carl Cooley, MD
Nancy Swigonski, MD, MPH

LIAISONS

Paul G. Biondich, MD, MS
Partnership for Policy Implementation (PPI)

Donald Lollar, EdD
Centers for Disease Control and Prevention

STAFF

Jill Ackermann
Amy Brin, MA
Mary Crane, PhD, LSW
Amy Gibson, MS, RN
Stephanie Mucha Skipper, MPH, Principal Staff
Darcy Steinberg-Hastings, MPH

CONSULTANT

Melissa Capers, MA, MFA

REFERENCES

5. American Academy of Pediatrics, Committee on Children With
30. Werner EE, Honzik MP, Smith RS. Prediction of intelligence and achievement at ten years from twenty months pediatric and psychologic examinations. Child Dev. 1968;39:1063–1075
32. Rubin IL, Crocker AC. Medical Care for Children and Adults With Developmental Disabilities. 2nd ed. Baltimore, MD: Paul H. Brookes; 2005
34. Tjossem TD. Intervention Strategies for High Risk Infants and Young Children. Baltimore, MD: University Park Press; 1976