Rett syndrome is a relatively rare neurodevelopmental disorder that achieved prominence in the early 1980s. Identified predominantly in females, Rett syndrome occurs equally in all ethnic groups with a prevalence of 1 in 10 to 20,000 females. Identification of mutations in the gene, MECP2 (methyl-CpG-binding protein 2), in 1999 confirmed its genetic basis. More than 95% of females who fulfill consensus criteria for Rett syndrome have a MECP2 mutation. Yet, Rett syndrome is generally sporadic with a recurrence risk well below 0.5%. Despite significant clinical and neurobiologic advances in recent years, physicians, related health care professionals, and educators remain relatively uninformed about Rett syndrome. This commentary is designed to alert the medical community about the critical need for timely diagnosis and relevant intervention strategies for this unique disorder.

HISTORY

In the early 1960s, two European physicians independently recognized Rett syndrome. The first, Andreas Rett, a developmental pediatrician in Vienna, Austria, identified a number of females who had a unique pattern of neurodevelopmental expression following a period of apparently normal development including deceleration in the rate of head growth, loss of purposeful hand skills and communication capabilities including language and social interaction, and the appearance of stereotypic hand movements. At the same time, Bengt Hagberg, a child neurologist in Göteborg, Sweden, made similar observations. A chance meeting between these physicians generated the first widely-read publication in the *Annals of Neurology* [1]. Within a short time, Rett syndrome was diagnosed throughout the US, and the International Rett Syndrome Association (IRSA) was formed, becoming the clearinghouse in this country and to some extent, worldwide, for parents and other interested persons. Today, the IRSA database contains more than 3500 individuals with Rett syndrome. From the beginning, a genetic basis was suspected due to almost total occurrence in females, twin studies, and vertical transmission from an affected woman to her female offspring. Monozygotic twins, with a single exception, were concordant. After identification of MECP2 mutations, the non-concordant identical twin pair was explained by unbalanced X chromosome inactivation. Studies on an X chromosome-autosome translocation [2] and familial recurrences [3, 4] restricted the target area to the X chromosome long arm (Xq28), leading to the identification of mutations in MECP2 [5].
Clinical Picture Rett syndrome has its onset typically between 6 and 18 months of age. Pregnancy and delivery are usually normal; girls appear normal at birth and seem to develop normally in early infancy; and early motor development including sitting and walking appears appropriate. Many develop single words or phrases. However, they are also commonly hypotonic from birth and good babies, perhaps “too good.” During this early period, deceleration in the rate of head growth (as early as 3 months of age) and weight gain may be noted. Microcephaly is noted in about 50%. Deceleration in the rate of linear growth occurs but usually after the first birthday [6]. The first signs are increasing irritability, stagnation or plateauing in the acquisition of motor skills, and then loss of fine motor skills including playing with toys or manipulating objects. These are accompanied by diminished interest in other activities and in socializing with others, giving the appearance of autistic-like interactions. During or shortly after this regression, stereotypic hand movements emerge, generally, but not always occurring in the midline. These consist of hand-wrining, hand-washing, hand-patting, hand-clasping or hand-mouthing or picking at the clothes. Each girl develops her own repertoire of stereotypes that evolve over time. Hand stereotypes occur only during wakefulness, are often incessant, and tend to be exacerbated by stress or excitement. Approximately 80% learn to walk, but in a dyspraxic, non-purposeful fashion on a wide base. Gait occasionally features toe-walking, repetitive shifting of weight from one foot to the other, and by the first step being backwards.

Over time, other features including teeth grinding or bruxism, disturbed sleep, and abnormal breathing patterns may occur. Breathing patterns involve breath-holding or hyperventilation, or both. As with stereotypic hand movements, these happen only during wakefulness and increase with excitement or stressful situations. Scoliosis develops in most girls, requiring surgery in about 10%. Other features include GE reflux; GI dysmotility resulting in swallowing dysfunction and constipation; cold, often purplish extremities, more so in lower than upper; osteopenia with increased incidence of fractures; and EKG changes including prolonged QT syndrome.

Consensus diagnostic criteria have been refined recently [7]. These allow for standardized clinical diagnosis of Rett syndrome throughout the world (Table 1a). Variant forms of Rett syndrome are also recognized and criteria elaborated for their diagnosis. These variants include an early onset seizure type, a congenital form lacking normal early development, a preserved speech variant with some purposeful language, and a delayed form or forme fruste.

The temporal profile of Rett syndrome is quite consistent (Table 1b). After the early regression, development stabilizes and interaction and socialization improve, particularly in choice-making and better eye contact. Conversely, during this period seizures may be prominent and irregular breathing may intensify. Later on, hand stereotypes may diminish in their frequency and in their overall expression. The absence of further cognitive loss provides strong support for employing therapies to maximize communication and socialization capabilities and to preserve motor function. Although much work remains, we now have a better understanding of the natural history of Rett syndrome, including survival as well as the many medical issues associated with it [8].

LONGEVITY

Rett syndrome is a neurodevelopmental disorder with likelihood of prolonged survival, particularly given the current intervention strategies. In an unpublished study, we noted normal survival through age 10, whereas survival through age 35 was 70% of the normal female population. With proper nutrition and medical care, prolonged survival is likely to be the rule. As a consequence, parents or other caretakers must plan for long-term care.
Sudden death has been described in Rett syndrome, generally of unknown cause, but possibly secondary to seizures, autonomic dysfunction, or a cardiac conduction abnormality.

MECP2 MUTATIONS

More than 95% of females fulfilling criteria for Rett syndrome have a mutation in MECP2, displaying striking phenotypic variability. Females with such mutations may be completely normal or have clinical features ranging from mild learning disabilities to Angelman syndrome to autism to Rett syndrome. Females who appear normal or have learning disabilities generally share the same mutation as a sibling or child with Rett syndrome, but lack features of Rett syndrome due to favorable X inactivation skewing toward the normal X chromosome. Females with features of Angelman syndrome represent the close clinical overlap during early childhood between the two disorders, and females who have autism but not Rett syndrome reflect either favorable skewing in X inactivation or have a less severe mutation.

Rett syndrome has been identified in males under two circumstances: the first being males with Klinefelter syndrome who have an extra X chromosome making them, in that sense, similar to females [9]; the second being males with somatic mosaicism in which some cells express a normal X chromosome and others express an X chromosome with a MECP2 mutation [10]. In this case, they resemble females in the sense of balanced X inactivation. Other males have mutations in MECP2 and do not have Rett syndrome, but rather, a much more severe disorder with motor and respiratory problems present from birth and premature death usually by 1½ years. About half with this progressive encephalopathy have the same mutation as an affected sibling(s) whereas the others represent sporadic occurrences [11]. Still other males demonstrating X-linked mental retardation without Rett syndrome have mutations in the MECP2 gene. Most recently, males (and one female with the preserved speech variant) have duplication (extra copy) of MECP2. These males demonstrate severe cognitive impairment and progressive motor dysfunction (spasticity), but no other features of Rett syndrome [12].

DIAGNOSTIC TESTING

Approximately 80% of females who have features of Rett syndrome fulfill the consensus criteria, and of those, more than 95% have a mutation in MECP2. Approximately 20% of females with Rett syndrome fall into one of the variant categories whether congenital, early onset seizure, preserved speech, or delayed onset (forme fruste). Of this group, approximately 50% have a mutation in MECP2. Children, who fulfill diagnostic criteria, whether typical or variant, should be tested for mutations in MECP2. This would include young females (6-24 months) who display only some features associated with Rett syndrome such as low muscle tone, deceleration in the rate of head growth, or unexplained developmental delay. With the advent of effective treatment strategies, early diagnosis, prior to full expression of typical features, will be crucial. Testing should include sequencing of the four MECP2 exons. If sequencing is normal, testing for large deletions should be performed. Health care providers should be aware that sequencing and large deletion testing involves different methodologies and order the tests for large deletions as appropriate.

MECP2 testing should also be performed for the following individuals: 1) females who demonstrate the characteristics of Angelman syndrome but have normal methylation or mutation studies at the Angelman locus; 2) males with X-linked mental retardation and normal Fragile-X testing; and 3) infants with unexplained neonatal or infantile encephalopathy.

MECP2 testing is available in a number of different clinical laboratories including those at the Baylor College of Medicine in Houston, Texas, and at the Greenwood Genetic Center in Greenwood, South Carolina.

CLINICAL RESEARCH

Current clinical research is focused on refining the clinical aspects of Rett syndrome, including its natural history and effective intervention strategies. The Office of Rare Disease and the National Center for Research Resources within the National Institutes of Health are supporting a natural history study on Rett syndrome. This clinical research consortium has three
principal sites: Baylor College of Medicine, Greenwood Genetic Center in Greenwood, South Carolina, and the University of Alabama at Birmingham. The goal of this consortium is to evaluate and monitor 1000 individuals with Rett syndrome or mutations in MECP2. Through this project we expect expand our understanding of the natural history of Rett syndrome and to develop clinical and molecular (phenotype-genotype) correlations with the most common mutations in MECP2. The importance of understanding the natural history of Rett syndrome cannot be overstated. If we are to engage in treatment strategies that produce fundamental improvement, we need to know the course of this disorder so that we can judge the efficacy of these interventions as well as recognize untoward consequences that may occur. We are also updating the longevity information by probing the roster of clinical databases including IRSA. We will also be examining the quality of life both of the participants and their principal care providers. Throughout the course of these studies, new avenues for investigation should emerge.

RETT SYNDROME RARE DISEASE CLINICAL RESEARCH SITES

Data collected at the enrollment sites are transmitted electronically as confidential information to the Data Technology Coordinating Center (DTCC) at the University of South Florida in Tampa. The DTCC maintains an active public website that accepts disease specific contact registrants (www.rarediseasesnetwork.epi.usf.edu/).

Baylor College of Medicine:
Site PI: Daniel Glaze, MD
Coordinator: Judy Barrish, RN, BSN

Greenwood Genetic Center:
Site Co-PI: Mike Friez, PhD
Site Co-PI: Steve Skinner, MD
Coordinators: Bridgette Aufmuth, MS

University of Alabama at Birmingham:
Site PI: Alan Percy, MD
Coordinator: Jane Lane, RN, BSN

PARENT SUPPORT AND ADVOCACY —
The International Rett Syndrome Association provides support for families dealing with Rett syndrome and advocacy at the national level to promote awareness and generate interest in funding for research, particularly through the National Institutes of Health. IRSA is recognized throughout the world as the single most important source of comprehensive information about the clinical and research aspects of Rett syndrome (www.rettsyndrome.org).

The Rett Syndrome Research Foundation also provides research funding for promising basic science and translational research and advocates as well for expanded funding for research at the national level (www.rsrf.org).

The National Organization for Rare Disorders (NORD) represents the rare disease community by providing an alliance of voluntary health organizations to promote identification, treatment, and care of these rare disorders through education, advocacy, research, and service (www.rarediseases.org).

ACKNOWLEDGEMENT

This commentary was supported by NIH grants HD40301 (Program Project), RR019478 (Rare Disease CRC), UAB’s GCRC grant RR00032, and MRRC grant HD38985 (Mental Retardation Research Center). Special recognition is given to families of the affected individuals and the continuing support of the International Rett Syndrome Association.

TABLE 1A
Rett Syndrome Consensus Criteria
- Normal at Birth
- Apparently Normal Early Development (may be delayed at birth)
- Postnatal Deceleration of Head Growth in Most
- Lack of Achieved Purposeful Hand Skills
- Psychomotor Regression: Emerging Social Withdrawal, Communication Dysfunction, Loss of Learned Words, and Cognitive Impairment
- Stereotypic Movements: Hand Washing/Wrapping/Squeezing/Hand Clapping/Tapping/Rubbing; Hand Mouthing
- Gait Dysfunction: Impaired (dyspraxic) or Failing Locomotion

TABLE 1B
Rett Syndrome Temporal Profile
- Apparently Normal Early Development
- Arrest of Developmental Progress
- Frank Regression with Poor Social Contact and Finger Skills
- Stabilization: Better Social Contact and Eye Gaze, but Gradual Slowing of Motor Functions
REFERENCES

Hand wringing

Intense Eye Gaze

Hand wringing

Hand mouthing
Open gait Toe walking

Hand wringing

Hand wringing

Dr. Alan Percy and patient